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Abstract: The topic of this work is model following by output feedback in hybrid linear systems with state jumps.
In particular, the hybrid linear systems addressed are allowed to exhibit a direct algebraic link from the control
input to the regulated output — henceforth referred to as the control feedthrough. Moreover, this study considers
the problem of model following from a structural point of view in the sense that it is focused on achieving that the
output of the compensated system perfectly follows that of the model, provided that both the compensated system
and the model have zero initial conditions, for all the admissible input signals. A necessary and sufficient condition
for the existence of a solution to the problem dealt with is proven.
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1 Introduction

Model following is a widely studied problem of sys-
tem and control theory. First stated and solved for
linear time-invariant systems by state feedback [1],
it was lately solved by means of other compensation
schemes still in the framework of linear systems [2,3].
Moreover, it was extended to other classes of dynam-
ical systems, such as nonlinear systems [4, 5], time-
delay and uncertain systems [6–8], large-scale sys-
tems [9, 10], Markovian jump linear systems [11],
multimodal switching systems [12–16]. The interest
of model following is also related to the number of ap-
plications which have been developed during the last
decades [17–28].

In this work, model following is studied for a spe-
cial class of hybrid dynamical systems — namely,
those characterized by a continuous-time linear be-
havior subject to abrupt state discontinuities. The dy-
namics ruling the continuous-time behavior is briefly
called flow dynamics, while the dynamics governing
the instantaneous changes of the state is called jump
dynamics. More precisely, this work is focused on
hybrid linear systems whose jumps are possibly non-
equally spaced in time, but satisfy the only constraint
that the number of jump times is finite in any fi-
nite time interval, so as to leave possible chattering
phenomena out of consideration. Moreover, the hy-
brid linear systems addressed exhibit a direct control
feedthrough on the to-be-controlled output and allow
a control input on the sole flow dynamics.

Hybrid linear systems with state jumps, in gen-
eral, have recently focused the attention of the scien-
tific community, mainly for their capability of captur-
ing the features of complex dynamical systems, such
as colliding mechanical systems, multi-agent systems,
electro-mechanical systems and many others — see,
e.g., [29]. For this reason, several control problems
have been formalized and investigated for these dy-
namical systems in some previous papers [30–32] and
the aim of this work is to extend the previously de-
veloped methodologies so as to handle model follow-
ing. In particular, the possible presence of the control
feedthrough requires to elaborate further on recently-
introduced geometric notions for hybrid systems.

The methodology devised in this work in order
to handle hybrid linear systems is grounded on the
geometric approach to linear control theory [33, 34].
Although the geometric approach is a well-settled
methodology, introduced in the late sixties, it has re-
cently proven to be very flexible and powerful in deal-
ing with various control problems and different kind
of dynamical systems [35–43]. In particular, this ap-
proach has been applied to the study of other classes
of hybrid systems, such as switching multimodal sys-
tems [44–54].

1.1 Notation
The symbols R, R+, and Z

+ stand for the sets of real
numbers, nonnegative real numbers, and nonnegative
integer numbers, respectively. Matrices and linear
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maps are denoted by slanted upper-case letters, like
A. The image and the kernel of A are denoted by
ImA and KerA, respectively. The transpose of A is
denoted by A�. The inverse of a nonsingular square
matrix A is denoted by A−1. Vector spaces and sub-
spaces are denoted by calligraphic letters, like V . The
symbol I denotes an identity matrix of appropriate di-
mension.

2 Model Following by Output Feed-
back in Hybrid Linear Systems:
Problem Statement

In order to define a hybrid linear systems with state
jumps, the hybrid time domain must be set first. The
symbol T denotes a finite or countably infinite or-
dered set {t0, t1, . . .} of strictly increasing elements
of R+. The symbol tf stands for the last element of T
when T has finite cardinality. The set T is assumed
to exhibit no accumulation points. The symbol T de-
notes the set of all T meeting the constraint mentioned
above. The nonnegative real axis deprived of the ele-
ments of T is denoted by R

+ \ T .
The hybrid linear system with state jumps ΣP is

defined by

ΣP ≡⎧⎨
⎩

ẋP (t) = AP xP (t) +BP u(t), t∈R
+ \ T ,

xP (tk) = GP xP (t
−
k ), tk ∈T ,

eP (t) = EP xP (t) +DP u(t), t∈R
+,

where xP ∈XP =R
nP is the state, u∈R

p is the con-
trol input, and eP ∈R

q is the output, with p, q≤nP .
AP , BP , GP , EP , and DP are constant real matrices
of appropriate dimensions. The algebraic link from
the control input to the output, established by the ma-
trix DP , is referred to as the control feedthrough. The
rank of the matrices[

BP

DP

]
,

[
EP DP

]
,

is assumed to be full. The set of the admissible con-
trol input functions u(t), with t∈R

+, is defined as
the set of all piecewise-continuous functions with val-
ues in R

p. The so-called flow dynamics is ruled by
the differential state equation. Meanwhile, the alge-
braic state equation governes the so-called jump dy-
namics. Thus, according to the hybrid linear struc-
ture of ΣP , the state motion xP (t) in [0, t0) is the
solution of the differential equation, with given ini-
tial state xP (0)=xS,0 and input function u(t), with
t∈ [0, t0). The state xP (tk), with tk ∈T , is the image
through GP of xP (t

−
k )= limε→0+ xP (tk − ε). The

state motion xP (t) in [tk, tk+1), with tk, tk+1 ∈T ,
is the solution of the differential equation, given the
initial state xP (tk) and the input function u(t), with
t∈ [tk, tk+1).

The hybrid linear reference model with state
jumps ΣR is defined by

ΣR ≡⎧⎨
⎩

ẋR(t) = AR xR(t) +BR d(t), t∈R
+ \ T ,

xR(tk) = GR xR(t
−
k ), tk ∈T ,

eR(t) = ER xR(t), t∈R
+,

where xR ∈R
nR is the state, d∈R

q is the input, and
eR ∈R

q is the output. The set of the admissible input
functions d(t), with t∈R

+, is defined as the set of all
piecewise-continuous functions with values in R

q.
Hence, the problem of model following by output

feedback in hybrid linear systems with state jumps is
cast as follows. A block diagram illustrating the sys-
tem interconnection referred to in Problem 1 below is
presented in Figure 1.

Problem 1 (Model Following by Output Feedback
in Hybrid Linear Systems with State Jumps) Let
the hybrid linear system with state jumps ΣP and the
hybrid linear reference model with state jumps ΣR be
given. Find a hybrid linear compensator with state
jumps ΣC , defined by

ΣC ≡⎧⎨
⎩

ẋC(t) = AC xC(t) +BC h(t), t∈R
+ \ T ,

xC(tk) = GC xC(t
−
k ), tk ∈T ,

u(t) = CC xC(t), t∈R
+,

where h(t)= d(t)− eP (t), such that the closed-loop
hybrid linear system with state jumps ΣO, defined by

ΣO ≡⎧⎨
⎩

ẋO(t) = AO xO(t) +DO d(t), t∈R
+ \ T ,

xO(tk) = GO xO(t
−
k ), tk ∈T ,

eP (t) = EO xO(t), t∈R
+,

where

AO =

[
AP BP CC

−BC EP AC −BC DP CC

]
,

DO =

[
0
BC

]
,

GO =

[
GP 0
0 GC

]
,

EO =
[
EP DP CC

]
,

satisfies the requirement that the output eP (t) is equal
to the reference model output eR(t), for all t∈R

+,
when the respective initial states are zero, for all the
admissible input functions d(t), with t∈R

+, and all
the admissible sequences of jump times T ∈T .
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Figure 1: Model Following by Output Feedback

3 Feedforward Disturbance Decou-
pling for the Extended Hybrid Lin-
ear System: Problem Statement

As will be shown later on, the solution to the prob-
lem stated in Section 2 can be achieved by solving the
problem which is the object of this section: namely, a
problem of disturbance decoupling by dynamic feed-
forward, stated for a suitably-defined hybrid linear
system with state jumps. This newly-defined hybrid
linear system — from now on called the extended hy-
brid linear system with state jumps — is the output-
difference connection between the given hybrid linear
plant ΣP and a modified hybrid linear reference model
— henceforth denoted by Σ+

R. In particular, the hybrid
linear reference model Σ+

R is derived from the original
model ΣR by closing a positive unit feedback of the
output on the flow dynamics. Thus, Σ+

R is ruled by

Σ+
R ≡⎧⎪⎪⎨
⎪⎪⎩

ẋR(t) = (AR +BR ER)xR(t) +BR h(t),
t∈R

+ \ T ,
xR(tk) = GR xR(t

−
k ), tk ∈T ,

eR(t) = ER xR(t), t∈R
+.

The set of the admissible input functions to the mod-
ified reference model Σ+

R is defined as the set of
all piecewise-continuous functions h(t), with t∈R

+,
picking their values in R

q.
Consequently, the extended hybrid linear system

with state jumps — denoted by Σ — is defined as the
connection of the given hybrid linear systems ΣP with
the modified hybrid linear reference model Σ+

R, such
that the control input, the disturbance input, and the
output of Σ respectively are the control input of ΣP ,
the input of Σ+

R, and the difference between the out-
puts of ΣP and Σ+

R. Therefore, Σ is described by

Σ≡⎧⎨
⎩

ẋ(t) = Ax(t) +B u(t) +H h(t), t∈R
+ \ T ,

x(tk) = Gx(t−k ), tk ∈T ,
e(t) = E x(t) +Du(t), t∈R

+,

where

A =

[
AP 0
0 AR +BR ER

]
,

B =

[
BP

0

]
, H =

[
0
BR

]
,

G =

[
GP 0
0 GR

]
,

E =
[
EP −ER

]
, D = DP .

The state space of Σ will be denoted by X : i.e.,
X =R

n, where n=nP +nR.
Hence, the disturbance decoupling problem by

dynamic feedforward, for the extended hybrid linear
systems with state jumps Σ can be stated as follows.
Figure 2 shows a block diagram of the system inter-
connection dealt with in Problem 2 below.

Problem 2 (Feedforward Disturbance Decoupling
for the Extended Hybrid Linear System with State
Jumps) Let the extended hybrid linear system with
state jumps Σ be given. Find a hybrid linear compen-
sator with state jumps ΣC such that the compensated
hybrid linear systems

Σ̄≡

⎧⎨
⎩

˙̄x(t) = Ā x̄(t) + H̄ h(t), t∈R
+ \ T ,

x̄(tk) = Ḡ x̄(t−k ), tk ∈T ,
e(t) = C̄ x̄(t), t∈R

+,

where

Ā =

[
A BCC

0 AC

]
, H̄ =

[
H
BC

]
,

Ḡ =

[
G 0
0 GC

]
,

C̄ =
[
E DCC

]
,

satisfies the requirement that the output e(t) is zero,
for all t∈R

+, when the initial state is zero, for all the
admissible input functions h(t), with t∈R

+, and all
the admissible sequences of jump times T ∈T .
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Figure 2: Feedforward Disturbance Decoupling

4 Feedforward Disturbance Decou-
pling for the Extended Hybrid Lin-
ear System: Problem Solution

Solvability of Problem 2 can be completely character-
ized by a necessary and sufficient condition exploiting
the geometric notions introduced in the Appendix. As
will be shown in this section, such condition can be
expressed in coordinate-free terms, since it amounts
to an inclusion of subspaces. Nevertheless, since the
proof of sufficiency is constructive — namely, it is in-
cludes the synthesis of the compensator — some pre-
liminary remarks are also made with the purpose of
expressing such condition with reference to suitably
chosen coordinates.

To begin with, it is worth highlighting that the lin-
ear map A+BK, where K is a friend of the maximal
output-nulling H -controlled invariant subspace W∗

H ,
is represented by a matrix with a typical upper block-
triangular structure, when a suitable similarity trans-
formation is applied to the state space. In particular,
let S be a change of basis defined by S= [S1 S2 ],
with ImS1=W∗

H . Then, in the new coordinates,

A′ +B′K ′ = S−1 (A+BK)S =[
A′

11 +B′
1K

′
1 A′

12 +B′
1K

′
2

0 A′
22 +B′

2K
′
2

]
, (1)

where the structural zero in the lower left corner —
i.e.,

A′
21 +B′

2K
′
1 = 0, (2)

is due to (A+BK)-invariance of W∗
H . Similarly,

the linear map G is represented by

G′ = S−1GS =

[
G′

11 G′
12

0 G′
22

]
, (3)

in the same coordinates, where the structural zero in
the lower left corner is due to G-invariance of W∗

H .

Moreover, with respect to the same coordinates, the
linear map E+DK, where K is the friend of W∗

H
considered, is represented by a matrix with a structural
zero in the first block of columns: i.e.,

E′ +D′K ′ = (E +DK)S

=
[
0 E′

2 +DK ′
2

]
, (4)

where the structural zero — i.e.,

E′
1 +DK ′

1 = 0, (5)

is due to W∗
H ⊆Ker (E+DK).

Furthermore, the subspace inclusion that will be
proven to be equivalent to solvability of Problem 2 can
be conveniently recast in a coordinate-dependent form
with reference to the basis considered above. This is
to say that

H ⊆ W∗
H (6)

is equivalent to

H ′ = S−1H =

[
H ′

1

0

]
. (7)

In fact, the structural zero in H ′ means that a basis ma-
trix of H is a linear combination of the column vectors
of the basis matrix S1 of W∗

H .
With these premises, the necessary and sufficient

condition for Problem 2 to be solvable is formulated
as in the following theorem.

Theorem 3 Let the hybrid linear system with state
jumps Σ be given. Problem 2 is solvable if and only if
(6) holds.

Proof: If. Let (6) hold. Let K be a friend of
W∗

H . Hence, (1), (3), (4), and (7) hold with respect
to the specified coordinates. Let A′

C =A′
11+B′

1K
′
1,

B′
C =H ′

1, G′
C =G′

11, and C ′
C =K ′

1 be the matrices
of the hybrid linear regulator ΣC with respect to such
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Σ̄ ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = A′
11 x1(t) +A′

12 x2(t) +B′
1K

′
1 xC(t) +H ′

1 h(t), t∈R
+ \ T ,

ẋ2(t) = A′
21 x1(t) +A′

22 x2(t) +B′
2K

′
1 xC(t), t∈R

+ \ T ,
ẋC(t) = (A′

11 +B′
1K

′
1)xC(t) +H ′

1 h(t), t∈R
+ \ T ,

x1(tk) = G′
11 x1(t

−
k ) +G′

12 x2(t
−
k ), tk ∈T ,

x2(tk) = G′
22 x2(t

−
k ), tk ∈T ,

xC(tk) = G′
11 xC(t

−
k ), tk ∈T ,

e(t) = E′
1 x1(t) + E′

2 x2(t) +DK ′
1 xC(t), t∈R

+,

(8)

Σ̄ ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ̇(t) = A′
11 ζ(t) +A′

12 x2(t), t∈R
+ \ T ,

ẋ2(t) = A′
21 ζ(t) +A′

22 x2(t), t∈R
+ \ T ,

ẋC(t) = (A′
11 +B′

1K
′
1)xC(t) +H ′

1 h(t), t∈R
+ \ T ,

ζ(tk) = G′
11 ζ(t

−
k ) +G′

12 x2(t
−
k ), tk ∈T ,

x2(tk) = G′
22 x2(t

−
k ), tk ∈T ,

xC(tk) = G′
11 xC(t

−
k ), tk ∈T ,

e(t) = E′
1 ζ(t) + E′

2 x2(t), t∈R
+,

(9)

coordinates. Then, it will be shown that ΣC , with
zero initial state, solves Problem 2. To this purpose, it
is worth observing that the cascade, denoted by Σ̄ in
Problem 2, of the hybrid linear compensator ΣC (thus
determined) with the extended hybrid linear system Σ
is ruled by (8), where the state of Σ, in the new coor-

dinates, is partitioned as
[
x�1 x�2

]�
according to (1),

(3), (4), and (7). By setting ζ(t)=x1(t)−xC(t), with
t∈R

+, the system Σ̄ can be recast as in (9), where
(2) and (5) have been taken into account. Hence,
the assumption that the initial state is zero implies
ζ(t)= 0 and x2(t)= 0, for all t∈R

+, which also im-
plies e(t)= 0, for all t∈R

+, for all the admissible in-
put functions h(t), with t∈R

+, and all the admissible
jump time sequences T ∈T .

Only if. If (6) does not hold, no other output-
nulling H -controlled invariant subspace containing
H exists, since the set of all output-nulling H -
controlled invariant subspaces is an upper semilattice
and W∗

H is the maximum. ��

5 Model Following by Output Feed-
back in Hybrid Linear Systems:
Problem Solution

This section is aimed at showing that the problem
of disturbance decoupling by dynamic feedforward
stated and solved for the extended hybrid linear sys-
tem with state jumps respectively in Sections 3 and
4 is equivalent to the problem of model following by
output feedback stated in Section 2. This fact will be
proven by demonstrating that a hybrid linear compen-
sator with state jumps solves one of these problems if
and only if it solves the other. This result is formalized

in the theorem below.

Theorem 4 A hybrid linear compensator with state
jumps ΣC solves Problem 2 if and only if it solves
Problem 1.

Proof: If. Let the hybrid linear compensator
ΣC solve Problem 1. Consequently, the overall hy-
brid linear system with output feedback — from
now called Σ̄′ — is ruled by (10). It is worth-
while observing that, since ΣC solves Problem 1, un-
der the assumption that the initial state is the orig-
ina, the output of Σ̄′ satisfies the condition that
e(t)= 0, for all t∈R

+, for all the admissible in-
put functions d(t), with t∈R

+. Therefore, one
can replace eP (t)=EP xP (t)+DP CC xC(t) with
eR(t)=ER xR(t) in the state equations of Σ̄′. Con-
sequently, the new system Σ̄′′ is described by (11).
Further, since e(t)= 0 for all t∈R

+, for all the ad-
missible d(t), with t∈R

+, such condition holds when
d(t)=h(t)+ER xR(t), where h(t), with t∈R

+,
stands for any admissible input function. Then, the
system which turns out is the hybrid linear system Σ̄
considered in Problem 2, as is proven by (12), which
derive from Σ̄′′ with the abovementioned replacement.
The equations of Σ̄, which hold with e(t)= 0 for all
t∈R

+, for all the admissible h(t), with t∈R
+, show

that the hybrid linear compensator ΣC also solves
Problem 2: i.e., the problem of decoupling the signal
h(t), with t∈R

+, in the extended hybrid linear sys-
tem Σ, including the modified hybrid linear reference
model Σ+

R.
Only if. Let the hybrid linear compensator with

state jumps ΣC solve Problem 2. Therefore, to show
that ΣC also solves Problem 1, the reasoning pre-
sented in the if-part of the proof of can be pursued
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Σ̄′≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋP (t) = AP xP (t) +BP CC xC(t), t∈R
+ \ T ,

ẋC(t) = −BC EP xP (t) + (AC −BC DP CC)xC(t) +BC d(t), t∈R
+ \ T ,

ẋR(t) = AR xR(t) +BR d(t), t∈R
+ \ T ,

xP (tk) = GP xP (t
−
k ), tk ∈T ,

xC(tk) = GC xC(t
−
k ), tk ∈T ,

xR(tk) = GR xR(t
−
k ), tk ∈T ,

e(t) = EP xP (t) +DP CC xC(t)− ER xR(t), t∈R
+.

(10)

Σ̄′′≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋP (t) = AP xP (t) +BP CC xC(t), t∈R
+ \ T ,

ẋC(t) = AC xC(t)−BC ER xR(t) +BC d(t), t∈R
+ \ T ,

ẋR(t) = AR xR(t) +BR d(t), t∈R
+ \ T ,

xP (tk) = GP xP (t
−
k ), tk ∈T ,

xC(tk) = GC xC(t
−
k ), tk ∈T ,

xR(tk) = GR xR(t
−
k ), tk ∈T ,

e(t) = EP xP (t) +DP CC xC(t)− ER xR(t), t∈R
+.

(11)

backward — namely, starting from Σ̄ and ending to
Σ̄′. ��

6 Concluding Remarks

This work has been focused on hybrid linear systems
with state jumps and has shown a necessary and suffi-
cient condition to achieve structural model following
between a given plant and a given reference model by
means of an output feedback compensator. The the-
oretical result also outlines an algorithmic procedure
for the synthesis of the hybrid linear compensator that
solves the problem.

A Appendix

The wide literature available on disturbance decou-
pling shows that one of the most powerful tools to
successfully handle this problem is the geometric ap-
proach [33, 34]. Indeed, during the last decades,
the fundamental concepts formerly established to deal
with linear time-invariant systems have been extended
to more complex dynamical systems. More specif-
ically, concerning hybrid linear systems with state
jumps, some basic ideas, such as invariance and con-
trolled invariance, have been generalized so as to
adapt to this kind of dynamical systems in some ear-
lier articles [30–32]. However, in this work, as men-
tioned above, the considered hybrid linear systems
may exhibit a direct algebraic link from the control
input to the output. Hence, the notion of hybrid con-
trolled invariance must be integrated by the novel ex-
tension of the idea of output-nulling controlled invari-
ance.

The definitions of hybrid invariant subspace, hy-
brid controlled invariant subspace and output-nulling
hybrid controlled invariant subspace are given below
with reference to the extended hybrid linear system
with state jumps Σ. Nonetheless, it is understood that
the special structure of the matrices of Σ does not af-
fect those definitions. From now on, the symbol H
stands to qualify hybrid invariance or, respectively,
controlled invariance. The symbol B is the short no-
tation for ImB, while H stands for ImH . A sub-
space W⊆X is said to be an H -invariant subspace
if AW ⊆W and GW⊆W . A subspace W⊆X
is said to be an H -controlled invariant subspace if
AW⊆W +B and GW⊆W . Furthermore, it can
be shown that a subspace W⊆X , with a basis ma-
trix W , is an H -controlled invariant subspace if and
only there exist matrices XA, XG, and U such that
AW =W XA+B U and GW =W XG. Hence, the
definition of output-nulling H -controlled invariant
subspace is introduced as follows.

Definition 5 A subspace W⊆X , with a basis matrix
W , is said to be an output-nulling H -controlled in-
variant subspace if there exist matrices XA, XG, and
U such that AW =W XA+B U , GW =W XG,
and EW =DU .

A relevant characterization of the geometric concept
of output-nulling H -controlled invariant subspace is
expressed by the following statement, whose proof di-
rectly steams from the properties enjoyed by simulta-
neous invariant and output-nulling controlled invari-
ant subspaces in the linear time-invariant case.

Proposition 6 A subspace W⊆X is an output-
nulling H -controlled invariant subspace if and
only if there exists a linear map K such that
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Σ̄≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋP (t) = AP xP (t) +BP CC xC(t), t∈R
+ \ T ,

ẋC(t) = AC xC(t) +BC h(t), t∈R
+ \ T ,

ẋR(t) = (AR +BR ER)xR(t) +BR h(t), t∈R
+ \ T ,

xP (tk) = GP xP (t
−
k ), tk ∈T ,

xC(tk) = GC xC(t
−
k ), tk ∈T ,

xR(tk) = GR xR(t
−
k ), tk ∈T ,

e(t) = EP xP (t) +DP CC xC(t)− ER xR(t), t∈R
+.

(12)

(A+BK)W⊆W and W⊆Ker (E+DK) hold
along with GW⊆W .

Any linear map K satisfying the conditions of Propo-
sition 6 is said to be a friend of the output-nulling H -
controlled invariant subspace W .

As can be shown by simple algebraic arguments,
the set of all output-nulling H -controlled invariant
subspaces is an upper semilattice with respect to the
sum and the inclusion of subspaces. The maximum
of the set of all output-nulling H -controlled invariant
subspaces is henceforth denoted by W∗

H .
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